Aluminium-27 and ⁷¹Ga NMR studies of the solution chemistry of $Ga[AlCl_4]$ and related compounds

Zbyněk Černý, ^a Jiří Macháček, ^a Jiří Fusek, ^a Bohuslav Čásenský, ^a Otomar Křiž^a and Dennis G. Tuck^b

^a Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic,
 25068 Rez u Prahy, Czech Republic
 ^b Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada,

N9B 3P4

The non-aqueous solution chemistry of GaAlCl₄ has been investigated by ²⁷Al and ⁷¹Ga NMR spectroscopy. In dilute solution in benzene, the solute species are of the form $\{[R_nGa]^+[Cl_xAlCl_{4-x}]^-\}_m$ (R = arene; x = 1-3, n, m undetermined), while in concentrated solutions the dominant interactions involve aggregates of ion pairs. Dilute solutions of the salt in *n*-heptane have also been studied, together with *n*-heptane–benzene mixtures, solutions of GaAlCl₄ and Ga₂Cl₆ in *n*-heptane, solutions of GaAlBr₄ and GaAlII₄ in benzene, and mixed GaAlCl₄–GaAlBr₄ systems. The hydrolysis of GaAlCl₄ in benzene is shown to involve reaction at both Ga and Al centres.

The +I and +II oxidation states of gallium and indium represent a relatively unexplored area of Main Group chemistry, and in particular the structures of these species in both solid and solution phases raise some interesting problems.^{1,2} A number of these are illustrated by the behaviour of the so-called gallium dihalides. The crystalline state of 'GaCl₂' clearly contains Ga⁺ and GaCl₄⁻ ions, with the cation co-ordinated by eight chlorides of the surrounding anions,³ and a similar situation holds for 'GaI₂'.⁴ There are no simple solid binary compounds in which the Ga–Ga bonds have been identified, but adducts such as Ga₂X₄(diox)₂ (X = Cl, Br or I; diox = 1,4-dioxane) show this feature,⁵ as do the anionic complexes^{2,6} Ga₂X₆²⁻. It has been argued elsewhere¹ that a crucial factor in stabilizing Ga–Ga and similar M–M bonds is the prevention of intramolecular halide transfer through co-ordinative saturation at the metal centres.

Gallium dihalides are appreciably soluble in aromatic solvents, and the solvation of the Ga⁺ cation is believed to play a significant role in this respect. Studies of these solutions by previous workers, using ⁷¹Ga NMR spectroscopy, are discussed below. The compounds which are produced on crystallization reveal a fascinating range of structures,⁷ and the differing modes of co-ordination are reminiscent of those reported for the substituted cyclopentadienyl derivatives of indium(1). It is significant that analogous MR⁺ (R = arene) and MCp molecules (M = Ga or In) are isoelectronic.²

The related GaAlX₄ compounds^{8,9} have received less attention than the Ga₂X₄ systems. The ionic nature of Ga[AlCl₄] has been confirmed by vibrational spectroscopy¹⁰ and X-ray crystallography;¹¹ the latter studies identified eight-co-ordination of Ga⁺, with Ga–Cl distances corresponding to a 6 + 2 + 1 interaction. We now report NMR studies of such compounds, mainly for X = Cl and Br, using ²⁷Al and ⁷¹Ga MNR spectroscopy. The results refer to both aromatic and aliphatic solvents, and are discussed in terms of solvation and ion-multiplet interactions. Comparisons are made with earlier work on ⁷¹Ga spectroscopy of Ga₂X₄ compounds in solids, melts and aromatic solvents.^{7,12}

Experimental

The compound GaAlCl₄ was prepared by the literature method,⁸ involving the reaction of elemental aluminium with GaCl₃. The composition was confirmed analytically (Found: Ga, 28.8; Al, 11.8. Calc. for AlCl₄Ga: Ga, 29.2; Al, 11.3%). Analogous reactions yielded GaAlBr₄ and GaAlI₄. The

preparation and analysis of Ga₂Cl₆ followed methods described previously.¹³ All solvents were purified before use by distillation from calcium hydride.

Samples for NMR studies were prepared in an atmosphere of dry nitrogen: concentrations are stated as wt. %, *i.e.* weight of solute (g) per 100 g of solution. Spectra were recorded on a Varian 500 instrument operating at a frequency of 152.34 MHz for ⁷¹Ga, and 130.24 MHz for ²⁷Al. Resonance frequencies refer to $\delta = 0$ for ⁷¹Ga in [Ga(H₂O)₆]³⁺, and for ²⁷Al in [Al(H₂O)₆]³⁺. Each value quoted is the average of at least six measurements, following the techniques described earlier.^{13,14} The experimental errors on the reported values are better than in our previous work because of the relatively sharp resonances observed for ⁷¹Ga. The determination of T_1 involved an 180–*t*–90° inversion recovery pulse sequence, and pulse width measurements were a regular feature of such studies, as were integral scale measurements.

We noted an interesting effect in the solutions of GaAlCl₄. Over the course of 6 months, during which the samples were stored at ambient temperature, the half-widths of the ⁷¹Ga resonance decreased systematically by *ca*. 60%, while those for ²⁷Al increased by *ca*. 30%. In contrast, the chemical shifts for both nuclei were invariant over this same period. All the (averaged) values in Table 1 are for measurements taken at the end of this period, when changes over 1 month did not exceed 5%. We take these effects to be evidence of slow equilibration processes in such solutions. The values in Table 2 are for solutions kept for a few days at 60 °C before the spectra were recorded; under these circumstances, the differences in w_1 did not exceed 15% between successive measurements.

Results and Discussion

General

As noted above, the crystal structures of Ga_2Cl_4 , Ga_2I_4 and $GaAlCl_4$ have been established. All involve co-ordination of Ga^+ by halides of the MX_4^- anion, and some important parameters are given in Table 3. There is also information on the crystalline derivatives of the complexes of Ga_2X_4 (X = Cl or Br) with aromatic molecules, carefully reviewed by Schmidbaur.⁷ A mononuclear [(η^6 -R)Ga]⁺ unit has been identified in Me₆C₆·Ga₂Br₄, in which Ga⁺ is also co-ordinated by five bromine atoms; this η^6 -co-ordination of the aromatic ligand is in keeping with species such as CpM (M = In or Tl) and

ULL PAPEF

Table 1 Aluminium-27 and ⁷¹Ga NMR data for benzene solutions of GaAlCl₄^a

	²⁷ Al					⁷¹ Ga						
	20 °C			80 °C			20 °C			80 °C		
Concentration	δ	$W^{\frac{1}{2}}$	T_1	δ	$W_{\frac{1}{2}}^{1}$	T_1	δ	$W_{\frac{1}{2}}^{1}$	T_1	δ	$W^{1}_{\overline{2}}$	T_1
1.1 ^b	103	190	1.7	103	130	2.8	-675	130	4.0	-656	300	4.1
1.8 ^b	103	260	1.4	103	180	2.3	-680	120	3.9	-656	300	4.6
3.5°	103	200	2.1	103	150	3.4	-678	100	3.8	-654	270	5.7
22.7 ^c	103	140	2.8	103	95	4.7	-696	70	7.8	-674	200	8.0
36.5 ^{<i>d</i>}	103	120	2.9	103	90	4.9	-697	80	7.0	-674	155	9.2
46.6 ^{<i>d</i>}	102	180	2.2	102	115	3.9	-695	80	6.8	-675	145	11.0

^{*a*} All values are averaged from six measurements (see Experimental section); concentration in wt. %, δ in ppm, $w_{\frac{1}{2}}$ in Hz, T_1 in 10^{-3} s. ^{*b*} Dilute solution. ^{*c*} Solutions from two-phase system; see Experimental section. ^{*d*} Heavy phase of two-phase system.

 $[CpSn]^+$, and has been explained at various levels of sophistication in terms of overlap of metal and ring π orbitals. The relative simplicity of Me₆C₆·Ga₂Br₄ gives way to more complex structures as the donor strength of the aromatic ligand, and the size of the halide, decrease, so that the solid state of C₆H₆· Ga₂Cl₄ is based on {[(C₆H₆)₂Ga]GaCl₄}₂ units. In all cases, co-ordination involves both aromatic and halide ligands. The crystal structure results do not directly identify the species present in the solution phase, but do emphasize the necessity of considering both solvation by the aromatic solvent, and cation–anion interactions, in interpreting the NMR results.

The existence of Ga–Al bonded species in these solutions can be ruled out for a number of reasons. Firstly, the structural results noted earlier¹¹ demonstrate the eight-fold coordination of Ga⁺ by chloride ligands of $AlCl_4^-$ in the solid state. Secondly, the difference in the electronegativities of Ga and Al means that intramolecular halide transfer will favour the dissociation shown in Scheme 1, in the absence of co-ordinative saturation. Finally, this sequence will be enhanced by the solvation of Ga⁺ by the aromatic solvent. We therefore restrict the discussion to Ga⁺ ··· R and Ga⁺ ··· AlX₄⁻ interactions.

Before discussing our results, we should note the relevant results for Ga_2X_4 systems. Akitt *et al.*¹² based their ⁷¹Ga NMR values for Ga_2Cl_4 on $\delta(GaCl_4^-) = 0$, but recalculation to $[Ga(H_2O)_6]^{3+} = 0$ gives $\delta(^{71}Ga) = -692$ for Ga^+ in benzene solution, and $\delta -500$ for Ga^+ in molten Ga_2Cl_4 at 200 °C. Schmidbaur⁷ reports $\delta -596$ for Ga^+ in crystalline Ga[GaCl_4], in which Ga^+ is co-ordinated by eight chlorides. Dilute solutions of this salt in benzene or toluene gave $\delta -659$ and -668respectively, while in the light and heavy phases obtained with benzene, toluene or *p*-xylene $\delta -669$ to -674 for the light phases, and -687 ± 1 for the heavy phases (see below).

Solutions in benzene

The light phase. Except at low concentrations (*i.e.*, below $\approx 3.5\%$ at 20 °C), mixtures of benzene and GaAlCl₄ resolve into two liquid phases at room temperature, and above. Similar behaviour has been reported for Ga₂X₄ systems.⁷ The NMR spectra were recorded separately for each phase, and the results are discussed accordingly. In most cases, the spectra refer to sample separated by centrifugation, but the results recorded at two levels for unseparated systems were essentially identical to the former. Typical spectra are shown in Fig. 1, and the concentrational systems is the spectra of the spectra in the spectra in the spectra is the spectra in the spectra in the spectra in the spectra is shown in Fig. 1, and the concentration is the spectra in the spectra is shown in Fig. 1.

Fig. 1 Aluminium-27 (A) and ⁷¹Ga (B) NMR spectra of light phase solution of GaAlCl₄ in benzene; GaAlCl₄ concentration < 3.5 wt. %. Chemical shifts are in ppm; values in parentheses are the half-widths, in Hz, and refer to a freshly prepared solution

tration and temperature dependencies of the chemical shifts are summarized in Table 1.

The upper (i.e. light) phase solutions contain GaAlCl₄ in the range 1.1-3.5 wt. %; in terms of the quantity of benzene available for solvation of Ga+, the corresponding C₆H₆:Ga mol ratios are in the range 85-270. The ²⁷Al chemical shift in such phases is essentially temperature and concentration independent, and the value of δ 103 immediately identifies the species present as AlCl₄⁻. The half-widths of the signals are of the order of a few hundred Hz, whereas in basic solvents of high relative permittivity, unassociated AlCl4- gives much smaller values, with a low of 3 Hz being reported.^{15,16} Similarly, the relaxation times (T_1) are in the order of 10^{-3} s, to be compared with values of $\approx 10^{-2}$ s for the free anion. Throughout this series of measurements, T_2 for ²⁷Al is equal to or smaller than T_1 (typically $T_2 \approx 90-100\% T_1$), indicating that quadrupolar relaxation dominates for this nucleus in such media at ambient temperature. The differences become larger at 80 °C, where $T_2 \approx 60-90\%$ T₁, which may be due to a scalar contribution to T_2 caused by relaxation of the halogen nuclei of AlCl₄⁻.

The width of the ²⁷Al resonance at 20 °C may be due to changes in the magnitude of the field gradient at this nucleus, or

to an increase in the correlation time of the fluctuation of the field gradient. Changes in these parameters can be interpreted in terms of (i) increasing aggregation of the solute, (ii) distortion of the T_d symmetry of the AlCl₄⁻ anion due to solvation and/or ion-pairing effects, or (iii) chemical exchange between differing modes of co-ordination of the anion to Ga⁺. In the Ga2Cl4-benzene system, infrared spectroscopy 17 has been used to demonstrate a lowering of the symmetry of the anion from $T_{\rm d}$ to C_{3v} or C_{2v} upon dilution, with the explanation being in terms of ion-pair formation. The changes in half-width with increasing concentration are not monotonic in the present system, and it may well be that all these factors must be taken into account; for example, the constancy of w_1 for ²⁷Al resonance in increasingly concentrated solutions of NaAlEt₄ in *m*-xylene was explained as a peculiar and accidental combination of changes in correlation time (which should be affected by aggregation due to increasing concentration), and a lowering of the average electric field gradient at the Al nucleus as aggregation occurs.17

At 20 °C, the chemical shifts for ⁷¹Ga in these solutions are almost independent of concentration within a few ppm, in contrast to the changes from δ –650 to –670 for gallium(I) in solutions of Ga₂Cl₄ in benzene over approximately the same concentration range.⁷ the half-widths show a slight decrease with increasing concentration of GaAlCl₄, all of which implies a well defined environment for the Ga⁺ ion. The effect of raising the temperature is quite marked, with a change in δ of about 20 ppm to lower field over the range 20–80 °C, and this is again in contrast to the temperature independence reported for the Ga₂Cl₄–benzene system;⁷ similarly w_2 decreases with increasing temperature in the latter case, whereas the opposite is true for the present work.

While the interaction of the AlCl₄⁻ anions with Ga⁺ must be important, the crystal-structure evidence suggests that weak solvation by benzene may also be significant and this may contribute to the diamagnetic shielding of the Ga nucleus. Changes in the anisotropy and magnetic susceptibility of benzene will also contribute to the observed temperature effects. The interaction of both benzene and $AlCl_4^-$ with Ga^+ discussed above implies that the solute species can be formulated as $\{[R_nGa]^+$ - $[Cl_xAlCl_{4-x}]^-\}_m$ (x = 1-3, n and m cannot be defined); writing the anion as $[Cl_xAlCl_{4-x}]^-$ implies that the number of chlorides co-ordinated to Ga^+ from a given $AlCl_4^-$ may vary with the conditions. The time-averaged values of n and m cannot be derived from the present studies. In more concentrated (but still dilute) solution, the possibility of the association of ion-pairs into higher aggregates will increase with solute concentration. At 80 °C in the most dilute solution, at the ²⁷Al signal sharpens slightly and for ⁷¹Ga broadens; increasing Brownian motion of the ions will cause a weakening of the interaction of AlCl₄⁻ with Ga⁺, leading to a higher average symmetry for the anion at higher temperatures.

The heavy phase. In these solutions, the GaAlCl₄ concentration of 22.7–46.6 wt. % corresponds to C_6H_6 : Ga mol ratios between 10.8 and 3.6. The ²⁷Al chemical shift is again invariant at δ 103, and independent of temperature, but the half-widths are significantly smaller than in the lighter phase, and increasing temperature produces further sharpening of the signal. The chemical shift of the ⁷¹Ga resonance is more negative than in the dilute solutions, the signals are narrower, and the values of the spin-relaxation times (T_1) are approximately twice as high. With increasing temperature, the signal shifts to lower field by *ca*. 20 ppm, and the differences between T_2 and T_1 increase. In general, the resonances for the lower phase are shifted by about 20 ppm to higher field relative to the upper phase (Table 1), and are independent of concentration within experimental error.

At the concentrations studied, interactions between anion and cation, and ion-pair aggregation, must be very significant. At ambient temperature, a sharpened ²⁷Al signal at constant δ implies that the packing of anions around the cation is stereochemically more efficient than in the dilute solutions, and the ⁷¹Ga resonance is also sharper than in dilute solution. While these results do not identify the solute structure unambiguously, they imply an increasingly ordered arrangement, in which interaction with AlCl₄⁻ results in efficient shielding of the ⁷¹Ga nucleus and a shift of δ to a more negative value, as observed. The temperature effect is in the same order as in dilute solution.

The most concentrated solution studied contained 46.6 wt. % GaAlCl₄, with a C₆H₆:Ga mol ratio of 3.6:1, and under these conditions the liquid phase will contain highly ordered aggregates of $Ga^+ \cdots AlCl_4^-$ ion pairs. This will result in tight packing, and an increased average distortion of the AlCl₄ symmetry, as evidenced by the ²⁷Al line-width, but should have little effect on the already strong shielding of Ga. Increasing temperature (i.e., increased molecular motion) will lead to some loosening of this structure, and hence w_2 decreases for ²⁷Al and increases for ⁷¹Ga. Infrared studies of the heavy phase of the Ga₂Cl₄ benzene system also showed that increasing concentration lowered the symmetry of the GaCl₄⁻ anion.¹⁷ Finally, we note that the chemical shifts for Ga⁺ in Ga[AlCl₄] and Ga-[GaCl₄] in benzene are very similar, suggesting that the nature of the $Ga^+ \cdots Cl^-$ interaction is almost independent of the central metal of the anion. In these concentrated solutions, which are approaching those from which crystallization of solvated GaMX₄ occurs, interaction of benzene with Ga⁺ may become sufficiently strong to bring about changes in the ¹H and ¹³C NMR spectra, but no such effects were detected.

The NMR results do not of themselves explain the existence of two phases at GaAlCl₄ concentrations above *ca.* 3.5% at 20 °C. The ⁷¹Ga chemical shifts for phases in chemical equilibrium with each other (δ -678, -696 at 20 °C: see Table 1) show that Ga⁺ has significantly different shielding in the two solutions, while the ²⁷Al results give identical chemical shifts for AlCl₄⁻, and only small variations in w_2 [and this latter parameter is difficult to interpret with certainty (see above)]. The formation of two phases may be an indication of significant changes in the degree of solvation of Ga⁺ by benzene, and the emergence of the heavy phase may signal the absence of sufficient benzene to allow the formation of [R_nGa]⁺ species, which can exist only in the dilute (light) phase.

Solutions in n-heptane

Although it is generally assumed that M2X4 compounds are only soluble in aromatic solvents, GaAlCl₄ is in fact slightly soluble in *n*-heptane. A saturated solution at room temperature contains ca. 0.57 wt. % GaAlCl₄ (\approx 24 mmol L⁻¹), which is sufficient for the study of both ²⁷Al and ⁷¹Ga NMR spectroscopy, and Fig. 2 illustrates the spectra obtained in a typical experiment. Careful deconvolution shows that the 27 Al signal at δ 102 at 20 °C shifts very slightly on raising the temperature to 100 °C, at which point this main resonance is accompanied by a small shoulder at ca. δ 97, barely perceptible at 20 °C. This shoulder is assigned to a small quantity of hydrolysis product (see below), originating from traces of residual moisture in the system. The ⁷¹Ga spectra at both 20 and 100 °C (Fig. 2) reveal the existence of at least two Ga^I environments, which are undergoing slow chemical exchange. In such solutions, strong solvation can be of little significance, and the solvent presumably acts as a dispersing agent for the electrolyte, and given the low relative permittivity, aggregation of the ions must be a major factor. The linewidth of the AlCl₄⁻ signal shows that this anion is in a symmetrical environment. Two possible models seem reasonable. The first is that despite the visual evidence, there are in fact two admixed phases present (cf. Schmidbaur⁷ on Ga₂Cl₄-benzene systems), in which case the two ⁷¹Ga resonances arise from these different phases. The second is that the ions are assembled into stable aggregates such as micelles, in which Ga⁺ ions are

Fig. 2 Aluminium-27 (A) and 71 Ga (B) NMR spectra of a saturated solution of GaAlCl₄ in *n*-heptane; GaAlCl₄ concentration 0.57 wt. %. Numbers have the same significance as in Fig. 1

found in different environments on the micelle surface and in the interior. The lack of a significant temperature effect on either ²⁷Al or ⁷¹Ga resonance suggests a measure of stability for these aggregates, whatever their structure.

Mixed benzene-n-heptane solutions

Solutions of GaAlCl₄ in mixtures of benzene and *n*-heptane were prepared by mixing the three components. Analysis showed that the gallium content of the resultant saturated solution was 0.17 wt. % at 20 °C, corresponding to 24 mmol L⁻¹ GaAlCl₄, and the benzene: GaAlCl₄ mol ratios were calculated on this basis. The results for the two solutions studied are: I initial quantities 1.2 mmol GaAlCl₄, 0.11 mmol C₆H₆ (≈0.01 mL), 2 mL *n*-heptane; calculated mol ratio C₆H₆: GaAlCl₄ = 2.3 in the resultant solution. II initial quantities 1.1 mmol GaAlCl₄, 0.60 mmol C₆H₆ (≈0.06 mL), 2 mL *n*-heptane; calculated mol ratio C₆H₆: GaAlCl₄ = 12.0.

The spectra are shown in Fig. 3. The most striking feature, compared with Fig. 2A, is the very considerable increase in the line-widths of the ²⁷Al resonance for both solutions I and II $(w_2 \approx 2000 \text{ Hz})$, indicating very significant departures from T_d symmetry for the AlCl₄⁻ anion. There is little change with temperature, or with benzene concentration. Other noteworthy features are the evidence of slight hydrolysis, shown by shoulders at *ca*. δ 97, and the presence of a broad resonance at δ 114 in solution I at 20 °C, of unknown origin (Fig. 3A and 3B).

The ⁷¹Ga spectra of these solutions are complex. For solution I at 20 °C (Fig. 3C) a rather broad resonance at δ -670 is accompanied by two others at δ *ca.* -640 and -608, corresponding to those seen in *n*-heptane solution (*cf.* Fig. 2B). With increasing temperature this shifts to lower field, until at 100 °C a resonance at δ -625 is the dominant feature. Multicomponent spectra are also found in the case of solution II (Fig. 3D). The strongest resonance at 20 °C occurs at δ -690, with minor features at δ -670 and -605; with increasing

temperature, the first two coalesce into a dominant resonance at δ -640 at 100 °C, at which temperature the only other resonance detected is at δ -610. The δ -690 signal is close in frequency to that for the concentrated solutions in benzene, but the temperature dependence, which is similar to that in benzene solutions, and the presence of other resonances, suggests that we are dealing with a mixture of species in equilibrium, including those present in pure *n*-heptane. The relative importance of these clearly depends on temperature, and on the benzene: *n*-heptane ratio, and they may therefore include [**R**_n**G**a]⁺, ion pairs, aggregates and the micelles postulated above.

Addition of Ga₂Cl₆ to solutions in *n*-heptane

One advantage of studying solutions of GaAlCl₄ in *n*-heptane is that the effect of adding other reagents can be investigated. No changes were detected when either BCl₃ or CH₂Cl₂ was added to a saturated solution of GaAlCl₄ (mol ratio total Cl:Ga varied from 10 to 100) at room temperature, and raising the temperature did not alter this situation. On the other hand, the addition of Ga₂Cl₆ gave rise to interesting effects. Following the methodology used for solutions I and II above, solutions of following compositions were prepared: III initial quantities 1.4 mmol GaAlCl₄, 0.3 mmol Ga₂Cl₆, 1.5 mL *n*-heptane; calculated mol ratio Ga₂Cl₆:GaAlCl₄ = 8.3 in resultant solution. IV initial quantities 1 mmol GaAlCl₄, 1.4 mmol Ga₂Cl₆, 1.5 mL *n*-heptane; calculated mol ratio Ga₂Cl₆:GaAlCl₄ = 38.8.

As in the earlier studies, the ²⁷Al spectrum (Fig. 4A) consists of a single strong $AlCl_4^-$ resonance whose frequency is invariant with temperature, although the signal narrows significantly at 80 °C. Solutions III and IV gave essentially identical ²⁷Al spectra. Once again we note the presence of a small quantity of an unidentified product, which in the deconvoluted spectrum at 20 °C gives rise to the shoulder at δ 99.5.

The ⁷¹Ga spectra of solutions III and IV show, as expected, a new feature due to the presence of gallium(III) species, which at 20 °C gives rise to a broad resonance at δ 231, moving to δ 225 at 100 °C, and narrowing significantly in the case of solution IV (Fig. 4B). The Ga⁺ region of the spectrum for solution III at 20 °C has resonances at δ -610 and -645, with a new sharp signal appearing at δ -600 at 100 °C (Fig. 4C). Solution IV, containing more Ga₂Cl₆, has a series of ⁷¹Ga resonances in this region; the two absorptions at δ -608 and -640 at 20 °C gives way to one sharp resonance at δ -594 at 100 °C (Fig. 4D). As with all the other temperature effects for this system, the changes are completely and rapidly reversible, indicating species in rapid equilibrium with each other.

The interaction between GaAlCl₄ and Ga₂Cl₆ in *n*-heptane can be understood in terms of the potential of Ga₂Cl₆ for polarisation into either the ion-pair GaCl₂⁺ \cdots GaCl₄⁻ (see below), or the partially opened dimer which we designate the half-open structure. The importance of this latter tautomer in adduct formation has been discussed elsewhere.¹⁴

The spectrum of Ga₂Cl₆ in *n*-heptane (and in benzene)¹⁵ is a broad singlet at δ 222 and in solution IV at ambient temperature this shifts to δ 231. At 100 °C, we observed a new signal at δ 250, corresponding to the proposed GaCl₄⁻ moiety of the half-open structure (*cf.* GaCl₄⁻ in CH₂Cl₂, δ 250).¹⁵ The spectrum of solution III (Fig. 4C) shows that the signals from Ga⁺ in *n*-heptane are little affected by the presence of small quantities of Ga₂Cl₆ at 20 °C, or 100 °C, but further addition of the trihalide eventually results in the appearance of a single sharp resonance at δ –594 at 100 °C (Fig. 4D). The difference between this value and that for the half-open Ga₂Cl₆ is 845 ppm, almost identical to that for the difference between the Ga⁺

Fig. 3 Aluminium-27 (A,B) and ⁷¹Ga (C,D) NMR spectra of saturated solutions of GaAlCl₄ in benzene–*n*-heptane mixtures. Spectra A and C are for solution I, and B and D for solution II; see text for details. Numbers have the same significance as in Fig. 1

Fig. 4 Aluminium-27 (A) and ⁷¹Ga (B,C,D) NMR spectra, showing the effect of adding Ga_2Cl_6 to saturated solutions of $GaAlCl_4$ in *n*-heptane. Spectra A,B and C are for solution III, and spectrum D for solution IV; see text for details of composition. Numbers have the same significance as in Fig. 1

Table 2Gallium-71 and 27 Al NMR results for benzene solutions of
GaAlBr4, GaAlI4, and GaAlCl4 + GaAlBr4 mixtures^a

	²⁷ Al	⁷¹ Ga				
		20 °C	20 °C		80 °C	
Compound	Concentration	δW_2^1	δ	W_2^1	δ	W_2^1
$\begin{array}{l} \text{GaAlBr}_4\\ \text{GaAlBr}_4\\ \text{GaAlI}_4{}^b\\ \text{GaAlCl}_4 +\\ \text{GaAlBr}_4{}^c\end{array}$	$ \begin{array}{r} 6 \\ 28 \\ 3 \\ 10.5 + 22.2 \end{array} $	$ \begin{array}{cccc} - & - \\ 78 & 180 \\ - & - \\ 90 & 170 \end{array} $	-635 -654 -552 -672	270 230 550 120	$-617 \\ -627 \\ -515 \\ -650$	600 710 1200 440

^{*a*} Concentration in wt. %, δ in ppm, w_2^1 in Hz. ^{*b*} Saturated solution. ^{*c*} Apparently one-phase solution.

and GaCl₄⁻ resonances in solid Ga₂Cl₄.⁷ On the other hand, the value of δ -594 for Ga⁺ implies a deshielded cation, and these results can be accommodated in terms of co-ordination of both AlCl₄⁻ and half-open Ga₂Cl₆ around Ga⁺ in such a way as to give eight-co-ordination of Ga⁺ by Cl⁻ from both anions. Since these processes occur in pure *n*-heptane, there can be no aromatic solvation, and the resonance at δ -594 therefore identifies the limiting case of chloride co-ordination in solution; the chemical shift is in fact identical to that for Ga⁺ in crystal-line Ga[GaCl₄], in keeping with the eight-co-ordinate structure proposed.

Other GaAlX₄ systems

Table 2 shows the results of the investigation of ²⁷Al and ⁷¹Ga spectra of benzene solutions of GaAlX₄ (X = Br or I), and of mixtures of GaAlCl₄ and GaAlBr₄ in this solvent. The ²⁷Al spectrum of GaAlBr₄ was only observed in the higher concentration, for which the resonance at δ 78 confirms the presence of the AlBr₄⁻ anion.^{15,16} The line-width is similar to the values for AlCl₄⁻ at similar concentrations (*cf.* Table 1). Change in the ⁷¹Ga resonance with concentration and increasing temperature, are similar to those for GaAlCl₄, although the absolute values are to lower field by about 40 ppm. For GaAlI₄, the limited solubility (3% at 20 °C) meant that only ⁷¹Ga resonances were observed, and here the values are some 130–140 ppm downfield from those in GaAlCl₄ solutions; the temperature effect is more pronounced than in the GaAlCl₄ and GaAlBr₄ systems.

Table 2 shows a considerable dependence of the chemical shift of ⁷¹Ga on the type of anion, with a low-field shift difference of about 100 ppm from $AlCl_4^-$ to AlI_4^- . This indicates a marked paramagnetic shift contribution arising from the orbital angular momentum introduced by the interaction of halogen electron density with the outer filled 3d orbitals of Ga⁺ in the tightly bound ion–solute species. Since the electron density of the halogen involved in this interaction depends on the polarisability of the atom, the contribution to the shift deceases in the sequence I > Br > Cl, and the magnitude of the paramagnetic shifts of ⁷¹Ga serves as an indication of the strength of the donor interactions at the metal centre.

It is also interesting to note that the ⁷¹Ga resonances of Ga⁺ in GaAlCl₄–GaAlBr₄ systems at both 20 and 80 °C are almost identical to those for this cation in GaAlCl₄ in dilute solutions, which implies that the closeness of approach of the halide ligands of AlX₄⁻ (or AlX₂Y₂⁻) is an important factor in the shielding of the cation. This concept can be extended by comparing the present data with those for Ga[GaX₄] salts⁷ in the manner shown in Table 3. Within the scant data available, there is a monotonic relationship between $\delta(^{71}Ga)$ for a given salt in solution and the closest approach of X (of MX₄⁻) to the Ga⁺ ion in the solid state. This does not mean that the same forces govern the structures in solid and solution phases, but rather that the closeness of approach of MX₄⁻ to Ga⁺ is important

Table 3 Summary of structural data on Ga[MX₄] salts; distances in Å

	r(M-X)		$r(\mathrm{Ga}^+\cdots \mathrm{X})$				
Compound Ga[GaCl₄] Ga[GaI₄] Ga[AlCl₄]	Average 2.19 2.557	Range 3.18–3.27 3.281–3.820 3.101–3.858	Average 3.23 3.54 3.36	Closest approach 3.18 3.281 3.101	Ref. 3 4 8		

in determining the extent of the shielding of the cation by surrounding anions.

The spectra of a solution containing both GaAlCl₄ and GaAlBr₄ (mol ratio 1:1.21) are also instructive. The ²⁷Al resonance is at δ 90, close to that reported for AlCl₂Br₂⁻ in CH₂Cl₂ and in acetone (δ 92–94),¹⁵ showing that in benzene, as in other solvents, rapid halide exchange occurs between the two AlX₄⁻ anions. For ⁷¹Ga, the resonance at δ –672 is close to that for a dilute solution of GaAlCl₄ in benzene (*cf.* Table 1), but this value is probably better understood as the average of the signals of the initial components [GaAlCl₄ δ –696, GaAlBr₄ δ –654 (both values for the heavy phases), weighted mean δ –673].

Hydrolysis studies

We have noted earlier a number of spectra in which weak resonances were assigned to hydrolysis products, and it therefore seemed sensible to investigate this by the deliberate addition of water to solutions of GaAlCl₄ in benzene (22.7 wt. %). Fig. 5 shows the ²⁷Al and ⁷¹Ga NMR spectra of a solution with the mol ratio A1: $H_2O = 0.33$: 1. Broad ²⁷A1 peaks are observed at both 20 and 80 °C, and the latter has been deconvoluted to a series of five individual peaks at δ 103, 97, 94, 89 and 79 (Fig. 5A). The same features emerge from the treatment of the spectrum found after increasing the water content (A1: $H_2O = 1.6:1$) except that at 20 °C, the original signal at δ 103 is absent (Fig. 5C). These results also explain the presence of minor shoulders in the ²⁷Al spectra of systems noted above (e.g. Fig. 1); the sum of the intensities in this latter case is no more than 3% of the total. More importantly, hydrolysis is only a minor effect in the overall scheme of interactions in non-aqueous solutions of GaAlCl₄ in the concentration and temperature range used in this work.

In the solution of lower water content, the ⁷¹Ga spectrum shows the characteristic resonance of Ga⁺, at δ -741 (20 °C) and -726 (80 °C) (Fig. 5B), shifted significantly from the signal seen for a water-free solution at the same salt concentration (see Table 1; δ -696 and -674). At the higher water content (Fig. 5D), the δ -743 resonance is still apparent, but an additional very broad resonance appears at δ +235, indicating the formation of gallium(III) species (*cf.* Ga₂Cl₆ in benzene; δ 222). The ⁷¹Ga chemical shift in GaCl₄⁻ is in the region δ 223–252, depending on the solvent; ¹³ a range of chemical shifts has been reported for aqueous solution (δ 240–275) and [Ga(OH)₄]⁻ gives a broad resonance at δ 220.^{15,16} Any hydrolysis scheme must therefore incorporate change at both Al and Ga centres.

It is known that Ga_2X_4 can be hydrolyzed according to equation (1) with the eventual formation of gallium(III)

$$Ga[GaCl_4] + H_2O \longrightarrow Ga[Ga(OH)Cl_3] + HCl \quad (1)$$

hydroxide and gallium metal.^{18,19} The ²⁷Al spectra of solutions of GaAlCl₄ containing added water indicate a similar series of processes; Fig. 5A and 5C show that a series of new signals develop in the region predicted for $[Al(OH)_{4-n}Cl_n]^-$ species. This argument is supported by considering the frequencies of these signals as a function of the total electronegativity of these ligands, assuming that all the species in question have the same

Fig. 5 Aluminium-27 (A,C) and ⁷¹Ga (B,D) NMR spectra of a solution of GaAlCl₄ in benzene, *ca.* 23 wt. %, treated with H₂O. For A and B, mol ratio H₂O: Al = 0.3; for C and D, H₂O: Al = 1.6. Numbers have the same significance as in Fig. 1

Fig. 6 Dependence of $\delta(^{27}Al)$ as a function of $\Sigma\chi$ for $[Al(OH)_xCl_{4-x}]^-;$ chemical shift values from Fig. 5

stereochemistry and co-ordination number. Various attempts have been made in the past to estimate the electronegativity of OH, and values ranging from 2.3 to 3.9 have been proposed.²⁰ For the present purpose, it is only necessary to have internally consistent values for both OH and Cl, and we use the Pauling electronegativities, $\chi(OH) = 2.82$ and $\chi(CI) = 3.16$. The relationship between $\Sigma\chi$ and $\delta(^{27}AI)$ (values from Fig. 5A), shown in Fig. 6, has the monotonic form found in several similar plots for mixed halide complexes of Main Group elements. We therefore assign the ²⁷Al chemical shifts of these species as $[Al(OH)Cl_3]^- = \delta$ 97, $[Al(OH)_2Cl_2]^- = 94$, $[Al(OH)_3Cl]^- = 89$ and $[Al(OH)_4]^- = 79$ (all in ppm). The last value compares well with δ +80 from previous studies.¹⁶

This leaves no doubt that hydrolysis involves the formation of $[Al(OH)Cl_3]^-$ and that the minor features seen in Fig. 1, *etc.* are indeed due to small quantities of related products. Ligand exchange between the various aluminium anions is slow on the NMR time-scale. The other spectral changes in Fig. 5B show that the ⁷¹Ga resonance in the Ga⁺ region is about 45 ppm to higher field than in benzene solutions of GaAlCl₄ at similar

concentrations, so that the presence of OH ligands in the anion results in stronger shielding at the cation.

The very broad signal (Fig. 5D) seen for higher water content solution at δ 235 clearly indicates the presence of gallium(III) complexes, presumably formed by the reaction of Ga⁺ with water or HCl [equation (2)] followed by complexation and

$$Ga^+ + 2H \longrightarrow Ga^{3+} + H_2$$
 (2)

ligand exchange to give $GaCl_4^-$, $[Ga(OH)Cl_3]^-$, *etc.* The involvement of $[Al(OH)_nCl_{4-n}]^-$ complexes in this scheme would explain the non-statistical distribution of these anions in Fig. 5. For ⁷¹Ga, the chemical shifts ¹³ for the relevant molecules are GaCl_4⁻ δ 252, Ga₂Cl₆ 221, [Ga(OH)₄]⁻ 220, and a mixture of gallium(III) species in rapid exchange readily explains the broad resonance observed at δ 235 (20 °C) (Fig. 5D).

Conclusion

The ²⁷Al and ⁷¹Ga NMR spectra of solutions of GaAlX₄ in benzene, *n*-heptane and mixtures of these solvents are affected by concentration, temperature and the presence of Ga_2Cl_6 . Solvation of Ga⁺ or Al⁺ by benzene, and interaction with AlX₄⁻ anions, are important factors in understanding the results. In the absence of benzene, the aggregation of ion pairs is important. The quadrupolar relaxation of ²⁷Al is governed predominantly by the local electronic environment.

References

- 1 D. G. Tuck, Polyhedron, 1990, 9, 377.
- 2 D. G. Tuck, Chem. Soc. Rev., 1993, 22, 269.
- 3 G. Garton and H. M. Powell, J. Inorg. Nucl. Chem., 1957, 4, 84.
- 4 G. Gerlach, W. Hönle and A. A. Simon, Z. Anorg. Allg. Chem., 1982, 486, 7.
- 5 J. C. Beamish, R. W. Small and I. J. Worrall, *Inorg. Chem.*, 1979, 18, 220.
- 6 M. A. Khan, D. G. Tuck, M. J. Taylor and D. A. Rogers, J. Crystallogr. Spectrosc. Res., 1986, 16, 895.
- 7 H. Schmidbaur, Angew. Chem., Int. Ed. Engl., 1985, 24, 893.
- 8 J. D. Corbett and R. K. McMullan, J. Am. Chem. Soc., 1956, 78, 2906.

- 9 R. K. McMullan and J. Corbett, J. Am. Chem. Soc., 1958, 80, 4761.
- 10 F. J. Brinkmann and H. Gerding, Inorg. Nucl. Chem. Lett., 1971, 7, 667.
- T. Staffel and G. Meyer, Z. Anorg. Allg. Chem., 1987, 552, 108.
 J. W. Akitt, N. N. Greenwood and A. Storr, J. Chem. Soc., 1965,
- 4410. 13 Z. Černý, J. Macháček, J. Fusek, O. Křiž, B. Čásenský and D. G. Tuck, J. Organomet. Chem., 1993, 456, 25.
- 14 Z. Černý, J. Macháček, J. Fusek, B. Čásenský, O. Křiž and D. G. Tuck, Inorg. Chim. Acta, 1996, 247, 119.
- 15 J. Mason, *Multinuclear NMR*, ed. J. Mason, Plenum Press, New York, 1987, p. 225.
- 16 J. F. Hinton and R. W. Briggs, NMR and the Periodic Table, eds. R. K. Harris and B. E. Mann, Academic Press, London, 1978, R. Harlo and L.
 p. 281.
 17 E. Kinsella, J. Chadwick and J. Coward, J. Chem. Soc. A, 1969, 969.
 18 J. L. Gray and G. E. Maciel, J. Phys. Chem., 1983, 87, 5290.

- 19 S. M. Ali, F. M. Brewer, J. Chadwick and G. Garton, J. Inorg. Nucl. Chem., 1959, 9, 124.
- 20 J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry, Harper Collins, New York, 4th edition, 1993, p. 197.

Received 9th December 1997; Paper 7/08842F